发表论文

Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles
Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles

We perform dynamics simulations to investigate the translational and rotational glassy dynamics in a glass-forming liquid of monodisperse soft Janus particles. We find that, with decreasing temperature, the mean-square angular displacement shows no clear plateau in the caging region, in contrast with the apparent caging behavior of translational motion. By defining a reorientational mean-square angular displacement, the caging behavior of rotational motion can be recognized. On approaching the glass transition (decreasing temperature), the coupling between translational and rotational relaxation increases, while the coupling between translational and rotational diffusion decreases, whereas the coupling between translational and reorientational diffusion increases. The strong decoupling between translational and rotational diffusion is due to the suppressed translational mobility but promoted rotational mobility of soft Janus particles. We think that the low-T SE and SED decoupling is mainly attributed to hopping motion of soft Janus particles, whereas the high-T SE and SED decoupling is mainly attributed to collective cage motion of soft Janus particles. Our results demonstrate that interaction anisotropy has a critical effect on the translational and rotational dynamics of soft Janus particles.

A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene
A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene

The separation of acetylene from ethylene is a crucial process in the petrochemical industry, as even small acetylene impurities can lead to premature termination of ethylene polymerization. Herein, we present the synthesis of a robust, crystalline naphthalene diimide porous aromatic framework via imidization of linear naphthalene-1,4,5,8-tetracarboxylic dianhydride and triangular tris(4-aminophenyl)amine. The resulting material, PAF-110, exhibits impressive thermal and long-term structural stability, as indicated by thermogravimetric analysis and powder X-ray diffraction characterization. Gas adsorption characterization reveals that PAF-110 has a capacity for acetylene that is more than twice its ethylene capacity at 273 K and 1 bar, and it exhibits a moderate acetylene selectivity of 3.9 at 298 K and 1 bar. Complementary computational investigation of each guest binding in PAF-110 suggests that this affinity and selectivity for acetylene arises from its stronger electrostatic interaction with the carbonyl oxygen atoms of the framework. To the best of our knowledge, PAF-110 is the first crystalline porous organic material to exhibit selective adsorption of acetylene over ethylene, and its properties may provide insight into the further optimized design of porous organic materials for this key gas separation.

Improving Performance of All-Polymer Solar Cells Through Backbone Engineering of Both Donors and Acceptors
Improving Performance of All-Polymer Solar Cells Through Backbone Engineering of Both Donors and Acceptors

All-polymer solar cells (APSCs), composed of semiconducting donor and acceptor polymers, have attracted considerable attention due to their unique advantages compared to polymer-fullerene-based devices in terms of enhanced light absorption and morphological stability. To improve the performance of APSCs, the morphology of the active layer must be optimized. By employing a random copolymerization strategy to control the regularity of the backbone of the donor polymers (PTAZ-TPDx) and acceptor polymers (PNDI-Tx) the morphology can be systematically optimized by tuning the polymer packing and crystallinity. To minimize effects of molecular weight, both donor and acceptor polymers have number-average molecular weights in narrow ranges. Experimental and coarse-grained modeling results disclose that systematic backbone engineering greatly affects the polymer crystallinity and ultimately the phase separation and morphology of the all-polymer blends. Decreasing the backbone regularity of either the donor or the acceptor polymer reduces the local crystallinity of the individual phase in blend films, affording reduced short-circuit current densities and fill factors. This two-dimensional crystallinity optimization strategy locates a PCE maximum at highest crystallinity for both donor and acceptor polymers. Overall, this study demonstrates that proper control of both donor and acceptor polymer crystallinity simultaneously is essential to optimize APSC performance.