Nonconventional Full-Color Luminescent Polyurethanes:Luminescence Mechanism at the Molecular Orbital Level

Abstract

The study of structure−activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint. Detailed experimental and theoretical results show that the PUs have different temperature-dependent behaviors related to the interplay of H-bonding, through-space n−π interactions, and aggregation properties. The potential applications of PUs in colorful displays, covert information transmission, and multifunctional bioimaging have been verified. This work provides a new general protocol for the simple preparation of multifunctional nonconventional fluorescent polymers and deepens the understanding of their luminescence mechanisms.

Publication
ACS Materials Letters
蒲鑫
蒲鑫
硕博连读;博士二年级

研究兴趣包括全固态聚合物电解质多尺度模拟与设计、有机光电转换材料的多尺度理论模拟与设计等。

朱有亮
朱有亮

研究方向包括高分子/超分子的大尺度分子动力学模拟方法和软件、高分子材料力学性能的分子机理、共价有机框架的生长动力学等。