Mechanisms of Defect Correction by Reversible Chemistries in Covalent Organic Frameworks

Abstract

Reversible chemistries have been extensively explored to construct highly crystalline covalent organic frameworks (COFs) via defect correction. However, the mechanisms of defect correction that can explain the formation of products as single crystals, polycrystal/crystallites, or amorphous solids remain unknown. Herein, we employed molecular dynamics simulations combined with a polymerization model to investigate the growth kinetics of two-dimensional COFs. By virtue of the Arrhenius two-state model describing reversible reactions, we figured out the conditions in terms of active energy and binding energy for different products. Specifically, the ultraslow growth of COFs under high reversibility of reactions corresponding to low binding energies resulted in a single crystal by inhibiting the emergence of nuclei as well as correcting defects through continually dropping small defective fragments off at crystal boundaries. High bonding energies responsible for the high nucleation rate and rapid growth that incorporated defects in crystals and caused the division of crystals through defect correcting processes led to small crystallites or polycrystals. The insights into the mechanisms help us to understand and further control the growth kinetics by exploiting reversible conditions to synthesize COFs of higher quality.

Publication
The Journal of Physical Chemistry Letters
朱有亮
朱有亮

研究方向包括高分子/超分子的大尺度分子动力学模拟方法和软件、高分子材料力学性能的分子机理、共价有机框架的生长动力学等。