Mechanism for Topology Selection of Isomeric Two-Dimensional Covalent Organic Frameworks

Abstract

The mechanism of growth of one of the competitive topologies for covalent organic frameworks with constitutional isomers is poorly understood. Herein, we employ molecular dynamics to study the isoenergetic assembly of the rhombic square (sql) and Kagome lattice (kgm). The concentration, solvent conditions, and the reversibility of chemical reactions are considered by means of an Arrhenius two-state model to describe the reactions. High concentrations and poor solvent both result in sql, agreeing well with recent experiments. Moreover, the high reversibility of reactions gives rise to sql, while the low reversibility leads to kgm, suggesting a new way of regulating the topology. Our analyses support that the nucleation of isomers influenced by experimental conditions is responsible for the selection of topologies, which improves understanding of the control of topology. We also propose a strategy in which a two-step growth can be exploited to greatly improve the crystallinity of kgm.

Publication
The Journal of Physical Chemistry Letters
于向坤
于向坤
硕博连读,博士三年级

研究兴趣包括二维共价有机框架的生长动力学研究。

朱有亮
朱有亮

研究方向包括高分子/超分子的大尺度分子动力学模拟方法和软件、高分子材料力学性能的分子机理、共价有机框架的生长动力学等。