Folding behaviors of two-dimensional flexible polymers

Abstract

Unlike one-dimensional polymers, the theoretical framework on the behaviors of two-dimensional (2D) polymers is far from completeness. In this study, we model single-layer flexible 2D polymers of different sizes and examine their scaling behaviors in solution, represented by Rg ∼ Lν, where Rg is the radius of gyration and L is the side length of a 2D polymer. We find that the scaling exponent ν is 0.96 for a good solvent and 0.64 for under poor solvent condition. Interestingly, we observe a previously unnoticed phenomenon:under intermediate solvent conditions, the 2D polymer folds to maintain a flat structure, and as L becomes larger, multiple folded structures emerge. We introduce a shape parameter Q to diagram the relationship of folded structures with the polymer size and solvent condition. Theoretically, we explain the folding transitions by the competition between bending and solvophobic free energies.

Publication
The Journal of Chemical Physics
徐嘉琦
徐嘉琦
硕博连读;博士二年级

研究兴趣包括溶液中二维柔性聚合物的标度研究等。

朱有亮
朱有亮

研究方向包括高分子/超分子的大尺度分子动力学模拟方法和软件、高分子材料力学性能的分子机理、共价有机框架的生长动力学等。