朱有亮课题组

吉林大学朱有亮课题组专注于高分子/超分子的大尺度分子动力学模拟方法和软件、高分子材料力学性能的分子机理、共价有机框架的生长动力学等领域的研究。自主研发了分子动力学模拟软件GALAMOST 和 PYGAMD 并取得了一系列重要应用,软件应用成果已经在science等国际著名期刊发表论文超过200篇。

组内新闻

恭喜朱有亮老师受邀任PS&T和MGE Advances青年编委

恭喜朱有亮老师受邀任Polymer Science & Technology(《高分子科学与技术(英文)》,简称“PS&T”)和Materials Genome Engineering Advances(《材料基因工程前沿(英文)》,简称“MGE Advances”)青年编委。

第八届材料基因工程高层论坛

2024年11月13日至16日,由全国新材料大数据创新联盟与中国材料研究学会主办,宁德时代新能源科技股份有限公司、北京科技大学、北京云智材料大数据研究院承办的“第八届材料基因工程高层论坛”在福建省宁德市举行。此次论坛盛会群贤毕至,39位两院院士和海外院士出席,来自十余个国家和地区的180位海内外知名学者进行学术报告,千余位代表与会,共同探讨材料基因工程、新材料智能化研发、材料数据赋能等领域的前沿研究成果与发展方向,推动新材料科技和产业的智能化创新与突破。

中国化学会2024年软物质理论计算与模拟学术会议

2024年11月8-11日,中国化学会2024年软物质理论计算与模拟学术会议在广州成功举行。本课题组朱有亮老师与四位学生于向坤、徐嘉琦、蒲鑫、李子怡受邀参会。

2023年吉林大学“聚合物分子动力学软件培训班”在长春举行

2023年10月21-22日,由化学学院、唐敖庆理论化学基础学科中心举办的2023年吉林大学“聚合物分子动力学软件培训班” 在长春成功举行。培训班采取线下和线上相结合的方式同步进行,来自全国62所高校和科研机构的青年教师、研究生500余人参加本次培训班。

最新发表

Polymerization-Induced Self-Assembly for Modulating Assembly  Pathways and Microstructures of Amphiphilic Gradient Copolymer  Nanoparticles
Polymerization-Induced Self-Assembly for Modulating Assembly Pathways and Microstructures of Amphiphilic Gradient Copolymer Nanoparticles

Polymerization-induced self-assembly (PISA) offers a versatile platform for designing polymeric nanoparticles. Amphiphilic gradient copolymers, characterized by a gradual transition from hydrophilic to hydrophobic segments, exhibit reduced interfacial tension and enhanced stimulus responsiveness. However, the interplay between polymerization and self-assembly in PISA, influenced by the monomer feed ratio and reactivity, remains ambiguous. Herein, we employ coarse-grained simulations to investigate the role of the effective polymerization bias between monomers. Our results reveal that the relative monomer reactivity plays a key role in determining both the copolymer sequence and the vesicle formation pathway. At low reactivity differences, comparable monomer reactivities facilitate a cooperative polymerization-assembly process that produces numerous small spherical assemblies, which subsequently merge and reorganize into vesicles. In contrast, high reactivity asymmetry favors the formation of anisotropic worm-like micelles that progressively fuse, bend, and enclose into vesicular structures. Microstructural analysis further shows that gradient copolymer vesicles possess internal cavities larger than those formed from block copolymers. These insights provide guidance for tailoring vesicle formation pathways and fine-tuning microstructures for potential applications in drug delivery and materials science.

A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions
A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions

Artificial skin is essential for bionic robotics, facilitating human skin–like functions such as sensation, communication, and protection. However, replicating a skin-matched all-in-one material with excellent mechanical properties, self-healing, adhesion, and multimodal sensing remains a challenge. Herein, we developed a multifunctional hydrogel by establishing a consolidated organic/metal bismuth ion architecture (COMBIA). Benefiting from hierarchical reversible noncovalent interactions, the COMBIA hydrogel exhibits an optimal combination of mechanical and functional properties, particularly its integrated mechanical properties, including unprecedented stretchability, fracture toughness, and resilience. Furthermore, these hydrogels demonstrate superior conductivity, optical transparency, freezing tolerance, adhesion capability, and spontaneous mechanical and electrical self-healing. These unified functions render our hydrogel exceptional properties such as shape adaptability, skin-like perception, and energy harvesting capabilities. To demonstrate its potential applications, an artificial skin using our COMBIA hydrogel was configured for stimulus signal recording, which, as a promising soft electronics platform, could be used for next-generation human-machine interfaces.